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Abstract

A high-order photon Monte Carlo method is developed to solve the radiative transfer equation. The statistical and dis-
cretization errors of the computed radiative heat flux and radiation source term are isolated and quantified. Up to sixth-
order spatial accuracy is demonstrated for the radiative heat flux, and up to fourth-order accuracy for the radiation source
term. This demonstrates the compatibility of the method with high-fidelity direct numerical simulation (DNS) for chem-
ically reacting flows. The method is applied to address radiative heat transfer in a one-dimensional laminar premixed flame
and a statistically one-dimensional turbulent premixed flame. Modifications of the flame structure with radiation are noted
in both cases, and the effects of turbulence/radiation interactions on the local reaction zone structure are revealed for the
turbulent flame. Computational issues in using a photon Monte Carlo method for DNS of turbulent reacting flows are
discussed.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Thermal radiation is an important mode of heat transfer in many combustion systems [1]. Numerical stud-
ies of laminar premixed gas flames [2] have shown that reabsorption of emitted radiation can increase burning
velocities and extend flammability limits considerably, and fundamental extinction limits independent of the
system dimensions can exist due to radiative heat loss. In turbulent combustion, turbulence, chemical kinetics,
and radiation are coupled in highly nonlinear ways, leading to entirely new classes of interactions. In much the
same way as convection is aided by turbulence, so is radiation, which, in the presence of chemical reactions,
may increase several fold due to turbulence interactions.

The importance of the interactions between turbulence and thermal radiation (turbulence–radiation inter-
action – TRI) has long been recognized [3–8]. TRI arises from highly nonlinear coupling between temperature
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2006.10.014

* Corresponding author. Tel.: +1 814 863 6269; fax: +1 814 865 3389.
E-mail addresses: dch12@psu.edu (D.C. Haworth).

mailto:dch12@psu.edu


Y. Wu et al. / Journal of Computational Physics 223 (2007) 898–922 899
and composition fluctuations in both nonreacting and reacting turbulent flows. In this respect, TRI is akin to
the turbulence–chemistry interaction [9] that has been the subject of intense research for many years. Prelimin-
ary and state-of-the-art calculations have shown that TRI always increases the heat loss from a flame, and that
this additional heat loss can reach 60% of the total and more, leading to a reduction in the local gas temper-
ature of 200 �C or more and, consequently, to significant changes in key pollutant species (particularly NOx

and soot) in both luminous and nonluminous turbulent flames (e.g., [6,8,10–18]). Therefore, in many turbulent
flames accurate prediction of radiation and TRI can be expected to be at least as important as accurate mod-
eling of combustion rates and turbulence–chemistry interaction. TRI modeling, however, has largely been
ignored to date. The difficulty arises from the requirement to capture the interactions between the fluctuating
local absorption coefficient j and the radiative intensity I, and between j and the Planck function Ib. Tradi-
tional moment methods and one-point probability density function (PDF) methods result in many unclosed
terms and, consequently, many additional partial differential equations need to be modeled and solved simul-
taneously, which leads to an important numerical cost [13]. This, together with the fact that accurate radiation
modeling even in the absence of TRI is a daunting task, has prompted the majority of researchers to use sim-
plistic radiation models and/or radiation calculations. For example, the widely adopted optically thin-eddy
model assumes turbulent eddies to be optically thin and the fluctuations of j (a local quantity) and the inten-
sity I (a nonlocal quantity) to be uncorrelated. As a result, ÆjIæ . ÆjæÆIæ, and the knowledge of intensity fluc-
tuations is not required. Here angled brackets ÆÆæ denote mean quantities and a prime’ denotes a fluctuation
about the local mean: e.g., j = Æjæ + j 0. On the other hand, Ib is a function only of local temperature, and
the correlation ÆjIbæ can be obtained from a one-point PDF formulation without modeling. TRI effects thus
can be approximated using a one-point PDF method together with the optically thin-eddy approximation. The
optically thin-eddy model, however, cannot be applied to sooting flames that have optically thick eddies. It
may also fail for flows involving molecular gases: the spectrally averaged absorption coefficient of a gas tends
to be small, but the absorption coefficient at spectral line centers can be many thousand cm�1 atm�1, leading
to significant nonzero values of Æj 0I 0æ.

To establish the conditions for which the correlation between j and I needs to be considered in turbulent
combustion and to provide benchmarks for an optically thick-eddy model to be developed for PDF simula-
tions, turbulent chemically reacting flows can be simulated accurately using direct numerical simulation
(DNS) [20–22]. The radiation source term in the energy equation is a function of radiative intensity, which
is governed by the radiative transfer equation (RTE). DNS of turbulent flames with radiation thus requires
solutions to the RTE in addition to the equations of mass, momentum, energy, and species mass fractions.
In the present work, a photon Monte Carlo method is developed for the solution of the RTE for the following
reasons. First, the computational cost for a photon Monte Carlo method increases roughly linearly with the
complexity of the problem. Thus while simple radiation properties and geometry are considered in this
method-formulation paper, the approach is particularly well-suited for problems that involve direction-
and/or wavenumber-dependent properties and anisotropic scattering and/or for complex geometry. Second,
a photon Monte Carlo method theoretically can provide an ‘‘exact’’ solution to the RTE that is compatible
with the philosophy of DNS. Alternative methods, such as spherical harmonics and discrete ordinates meth-
ods, invoke approximations [1], and may prove to be computationally more expensive to achieve the level of
accuracy that is required for DNS (i.e., high-order resolution of directional and spectral variations). A high-
order photon Monte Carlo method also would be applicable to large-eddy simulation (LES), although in that
case additional modeling would be required for subfilter-scale TRI.

Monte Carlo methods have been applied to a variety of physical problems. General reviews can be found in
[23,24]. An example of a photon Monte Carlo method for thermal radiation and TRI in a sooting turbulent
flame can be found in [17]. There each optical path was treated as a combination of nonoverlapping multiple
segments, each of which may cross multiple computational cells. The radiative properties of the medium along
each segment were assumed to be uniform, rendering the method first-order accurate in space. The goal of the
present work is to develop a high-order photon Monte Carlo scheme that is compatible with DNS of chem-
ically reacting turbulent flows. The governing equations and physical models are outlined in Section 2. Section
3 describes key elements of the photon Monte Carlo method and the related random number relations. In Sec-
tion 4 the high-order implementation of the photon Monte Carlo method is developed, and numerical test
cases are presented in Section 5. Conclusions and future work are summarized in the final section.
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2. Governing equations and physical models

A turbulent, compressible, chemically reacting, radiatively participating ideal-gas mixture is considered.
For present purposes, chemical kinetics are represented by a one-step, irreversible, Arrhenius reaction involv-
ing two species (reactant and product),
RðreactantÞ ! P ðproductÞ:

The chemical reaction rate _w is expressed as
_w ¼ _wR

Y R1

¼ KqeY exp
�bð1�HÞ

1� að1�HÞ

� �
: ð1Þ
Here H is the reduced temperature, H = (T � T1)/(T2 � T1), where subscript ‘1’ refers to the fresh gases and
‘2’ to the burnt products (T2 is the adiabatic flame temperature). eY ¼ Y R=Y R1 is the mass fraction of reactant
normalized by the initial mass fraction of reactant, YR1. The coefficients K, a, and b are the reduced preexpo-
nential factor, the temperature factor, and the reduced activation energy, respectively,
K ¼ B expð�b=aÞ; a ¼ ðT 2 � T 1Þ=T 2; b ¼ aT a=T 2;
where B is the preexponential factor and Ta is the activation temperature. Detailed kinetics are readily accom-
modated, where appropriate.

The continuity, momentum, chemical species, and energy equations have the same form as in [19], with the
addition of a thermal radiation source term in the energy equation. Thus,
oqet

ot
þr � ðqet þ pÞ~u ¼ oðuisijÞ

oxj
þr � ðkrT Þ þ Q _w�r �~qrad; ð2Þ
where q, p, T, k,~u, and~qrad are the fluid mass density, thermodynamic pressure, temperature, thermal conduc-
tivity, velocity vector, and radiative heat flux vector, respectively. Q is the heat of reaction per unit mass of
fresh mixture, Q ¼ �Dh0

f Y R1, where Dh0
f is the heat of reaction per unit mass of reactant. sij are the compo-

nents of the viscous stress tensor, and qet is the total energy density per unit volume,
sij ¼ l
oui

oxj
þ ouj

oxi
� 2

3
dij

ouk

oxk

� �
;

qet ¼ q~u �~u=2þ p=ðc� 1Þ;
where l and c are the fluid dynamic viscosity and the (constant) ratio of specific heats, respectively.
The radiation source term in Eq. (2) is
r �~qrad ¼
Z 1

0

jg 4pIbg �
Z

4p
Ig dX

� �
dg ¼ 4jP rT 4 �

Z 1

0

Z
4p

jgIg dXdg; ð3Þ
where
jP �
R1

0 jgIbg dgR1
0 Ibg dg

¼ p

rT 4

Z 1

0

jgIbg dg ð4Þ
is the Planck-mean absorption coefficient. Here r is the Stefan–Boltzmann constant, g denotes wavenumber, X
is solid angle, jg is the spectral absorption coefficient, Ibg is the Planck function (a known function of local
temperature and wavenumber), and Ig is the spectral radiative intensity. In general, jP = jP(Y,T,p), where
Y denotes the vector of species mass fractions. For an absorbing, emitting, and scattering (‘‘radiatively par-
ticipating’’) medium, Ig is determined from the radiative transfer equation (RTE) [1]:
dIg

ds
¼ ŝ � rIg ¼ jgIbg � bgIg þ

rsg

4p

Z
4p

Igð̂siÞUgð̂si; ŝÞdXi: ð5Þ
Here ŝ and ŝi denote unit direction vectors, rsg is the spectral scattering coefficient, and bg = jg + rsg is the
spectral extinction coefficient. Ugð̂si; ŝÞ is the scattering phase function, which describes the probability that



Fig. 1. A statistically one-dimensional turbulent premixed flame. Instantaneous temperature isosurfaces indicate the location of the flame.
The figure corresponds to a case with lT/ll = 5.97 and u 0/sl = 1.26, where lT and u 0 are the characteristic length and velocity scales of
energy-containing turbulent motions, respectively, and ll and sl are the thickness and speed of a steady unstrained laminar flame for these
thermochemical conditions.
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a ray from incident direction ŝi is scattered into direction ŝ. The local value of Ig depends on nonlocal prop-
erties, on direction ð̂sÞ, and on wavenumber (g).

In the present work dimensionless forms of the governing equations are solved [19,25]. Nondimensionaliza-
tion of the new radiation source term in Eq. (2) is given in Appendix A. DNS of chemically reacting turbulent
flows requires that all relevant scales be fully resolved with no turbulence models employed. Consequently,
high-order numerical schemes and fine grids are required for DNS. Here temporal integration is performed
with a Runge–Kutta method of order three; for spatial discretization, a compact finite-difference scheme of
order six is used in the interior of the computational domain with various noncentered schemes near bound-
aries [26]. Temporal discretization is not relevant for the form of the RTE that is considered here (Eq. (5)) and,
in general, it is expected that the spatial discretization accuracy required for the RTE need not be as high as
that for the hydrodynamics equations. The nonlocal nature of Ig gives a spatial-averaging character to the
radiation source term. Still, it is of interest to explore the feasibility of high-order schemes and to use the high-
est order that is practicable. Here schemes having formal spatial accuracy of up to sixth order for~qrad and up
to fourth order for r �~qrad are developed and tested.

Canonical configurations are considered in DNS studies. For example, Fig. 1 shows a statistically one-
dimensional, turbulent premixed flame propagating in the �x-direction. There fresh reactants enter the
domain from the �x side and burned products leave from the +x side. Two types of flow boundary con-
ditions are considered. Periodic conditions are enforced in the y and z-directions while nonperiodic condi-
tions are enforced in the x-direction using the Navier–Stokes Characteristics Boundary Condition method
[27]. Details of the equations, normalizations, and numerical methods (in the absence of thermal radiation)
can be found in Ref. [25]. The radiation source term in Eq. (2) is obtained by solving Eq. (5) using the
photon Monte Carlo method that is developed herein. Three types of radiation boundary conditions are
considered: periodic, cold, and hot boundaries. Their implementation will be explained in subsequent
sections.

3. Photon Monte Carlo method for the solution of the RTE

A photon Monte Carlo method solves the RTE by following the trajectories of a large number of
representative photon bundles generated using statistical sampling techniques. It consists of two principal
parts: an emission stage and a tracing/absorption/scattering stage. Additional considerations are required
at boundaries of the computational domain. Emission, tracing/absorption/scattering, and boundary con-
ditions are described in the following three subsections, respectively. These essentially follow the
approaches outlined in Chapter 20 of Modest’s book [1]. The high-order implementation is developed
in Section 4.
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3.1. Emission

We define Lx, Ly and Lz as the lengths of a computational domain in the x, y and z-directions, respectively.
The total emitted radiant energy from within the domain, EV, then is
EV ¼
Z

V
4jPrT 4 dV ¼

Z Lx

0

Z Ly

0

Z Lz

0

4jPrT 4 dzdy dx: ð6Þ
Each photon bundle represents a specified fraction of EV and is characterized by six quantities: an emission
location (three spatial coordinates for volume emission, two for surface emission), an emission direction (azi-
muthal angle w, polar angle h), and a spectral variable (wavenumber g). All of these properties need to be
determined at the emission stage based on the probabilities of events in the reacting gas mixture. For example,
to find the emission location of a photon bundle, the cumulative distribution functions (CDF’s) of emission
along the x, y, and z-directions are first calculated sequentially as [1],
Rx ¼
R x

0

R Ly

0

R Lz

0
4jP rT 4 dzdy dx
EV

;

Ry ¼
R y

0

R Lz

0
4jPrT 4 dzdyR Ly

0

R Lz

0
4jPrT 4 dzdy

;

Rz ¼
R z

0
4jPrT 4 dzR Lz

0
4jPrT 4 dz

;

ð7Þ
where jP at each grid point is a function of local temperature, pressure, and species composition and, there-
fore, is known for a given flowfield. Inversion of Eq. (7) yields the emission position with Rx, Ry, and Rz each
sampled independently from a uniform distribution on [0, 1]: x = x(Rx), y = y (Ry,x), z = z(Rz,x,y). Imple-
mentation details will be given in Section 4.1.

With the emission position determined, the emission wavenumber is found from the following random
number relation:
Rg ¼
p

jPrT 4

Z g

0

jgIbg dg; ð8Þ
where Rg is the CDF of the emission wavenumber. After inversion with Rg sampled from a uniform distribu-
tion on [0,1], the emission wavenumber is g = g(Rg,x,y,z).

The emission direction is determined in a similar manner. Assuming local thermodynamic equilibrium
within the volume, the emission is isotropic; i.e., all possible directions are equally likely for the emission
of a photon bundle, and the random number relations for the emission direction are [1]
Rw ¼
w
2p
; Rh ¼

1

2
ð1� cos hÞ; ð9Þ
where Rw and Rh are the CDF’s of azimuthal angle w and polar angle h at emission position (x,y,z), respec-
tively. Inversion of Eq. (9) leads to w = w(Rw) and h = h(Rh).

3.2. Tracing, absorption, and scattering

When radiative energy travels through a participating medium, it is attenuated by absorption and scattered.
At the photon tracing stage an energy partitioning scheme [1] is adopted, where the energy of each photon
bundle is gradually attenuated due to absorption until: (1) the bundle leaves the enclosure or hits a wall
and is absorbed; or (2) its energy is depleted. Mathematically, a photon bundle of initial energy E0 traveling
through a layer of thickness S emerges with radiant energy
ES ¼ E0 expð�sgÞ; ð10Þ

where sg ¼

R S
0

jg ds is the optical thickness at the wavenumber of the photon bundle. The amount of energy
absorbed by the medium is then
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MEabs ¼ E0 � ES ¼ E0½1� expð�sgÞ�: ð11Þ

Attenuation by scattering obeys the same relationship as for absorption, with the absorption coefficient re-
placed by the scattering coefficient. Thus, the distance that a photon bundle travels before being scattered
can be obtained by inverting the equation:
Rr ¼ exp �
Z S

0

rsg ds
� �

; ð12Þ
where Rr is a random number distributed uniformly on [0,1]. Once a photon bundle is scattered, it continues
to travel in a new direction, where the CDF’s of the new azimuthal and polar angles are
Rwi
¼
R wi

0

R p
0

Uðŝ; ŝiÞ sin hi dhi dwi

4p
;

Rhi ¼
R hi

0
Uðŝ; ŝiÞ sin hi dhiR p

0
Uð̂s; ŝiÞ sin hi dhi

:

ð13Þ
Here ŝ is the original direction, and the new polar angle hi and azimuthal angle wi are measured from the axis
pointing into the ŝ direction and in a plane normal to ŝ, respectively. When scattering is isotropic, the above
relations reduce to Eq. (9).
3.3. Boundary conditions

Two types of radiation boundary conditions are considered: periodic and radiative surface conditions.
When a photon bundle reaches a radiatively periodic boundary, it re-enters the computational domain at
the corresponding point on the opposite side with no change in properties. A radiative surface is a
boundary that may emit radiative energy and may partially absorb, partially transmit, and partially
reflect radiative energy impinging on it. It can be either a physical boundary or an artificial closing
boundary.

Emission from a radiative surface is considered using a two-dimensional analog of Eqs. (7)–(9). Consider
the statistically one-dimensional flame shown in Fig. 1 as an example. There an artificial closing surface at the
+x (hot) boundary is required with emission from that surface. The emission position of a photon bundle leav-
ing that surface is determined by inversion of the following random number relations:
Ry ¼
R y

0

R Lz

0
�rT 4 dzdy
EA

;

Rz ¼
R z

0 �rT 4 dzR Lz

0
�rT 4 dz

:

ð14Þ
Here � is the total hemispherical emittance of the surface and EA is the total emission from the surface,
EA ¼
Z

A
�rT 4dA ¼

Z Ly

0

Z Lz

0

�rT 4 dzdy: ð15Þ
As for volume emission the next property of the photon bundle to be determined is the wavenumber. The cor-
responding CDF of the emission wavenumber is
Rg ¼
1

�rT 4

Z g

0

�gEbg dg: ð16Þ
Once the emission location and wavenumber have been chosen, the directions of emission can be determined
from the CDF’s of azimuthal and polar angles [1]. For an isotropic and diffuse surface, these are
Rw ¼
w
2p
; Rh ¼ sin2 h: ð17Þ
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The random number relation for surface absorption is straightforward. When radiative energy impinges on an
opaque surface, the fraction a0g is absorbed while the remainder, 1� a0g, is reflected, where a0g is the spectral
directional absorptance. For a diffuse reflector, the CDF’s of the reflection directions are
Rwr
¼ wr

2p
; Rhr ¼ sin2 hr: ð18Þ
In the most general case, the directions of reflection depend on the bidirectional reflection function of the
material. Their CDF’s can be found in [1] (Chapter 20).

Photon bundles incident on a ‘‘cold’’ radiation boundary (e.g., the �x boundary in Fig. 1) simply are
removed from the calculation.

4. High-order numerical implementation of the photon Monte Carlo method

The photon Monte Carlo method described in the previous section is applicable to thermal radiation prob-
lems of any configuration. The underlying DNS code, however, was developed only for canonical configura-
tions using a Cartesian coordinate system. This section, therefore, will only consider such configurations.
Moreover, the mesh system on which the new high-order photon Monte Carlo scheme will be built
corresponds to a structured grid with directionally uniform grid spacing, as required by the compact finite-
difference schemes in the underlying DNS code [26]. A photon Monte Carlo method is intrinsically a
three-dimensional method; i.e., photon bundles need to be traced in three-dimensional computational
domains to correctly predict optical thickness and energy absorption along their paths. For physically one-
or two-dimensional radiation problems, the statistical error can be reduced by averaging over planes or lines
along the redundant directions introduced into the three-dimensional photon Monte Carlo simulations. The
underlying DNS code solves the unsteady governing equations. Therefore, for physically stationary problems
or problems whose flow fields vary slowly with time, statistical error in numerical solutions can be further
reduced by averaging over time.

The remainder of this section describes the high-order numerical implementations of the essential elements
of the photon Monte Carlo method introduced in the previous section. Without loss of generality, the three-
dimensional computational domain is taken to have dimensions of [0,Lx] · [0, Ly] · [0,Lz]. The numbers of
grid points in the x, y, and z-directions are Nx, Ny, and Nz, and the corresponding grid spacings are denoted
by hx = Lx/(Nx � 1), hy = Ly/(Ny � 1), and hz = Lz/(Nz � 1), respectively.

4.1. Emission

Determination of emission locations of photon bundles requires knowledge of the CDF’s of emission posi-
tions (Eqs. (6) and (7)). For a given flowfield and specified jP = jP(Y,T,p) in a three-dimensional configura-
tion, the discrete values of total emissive power at grid points ðxi; yj; zkÞ 2 ½1;Nx� � ½1;N y ��
½1;N z�;Eijk � ð4jPrT 4Þjðxi;yj;zkÞ, can be readily calculated; the SI dimensions of Eijk are [W/m3]. Defining a con-
tinuous function F1(x,y,z) ” 4jPrT4 such that F1(xi,yj,zk) = Eijk, the integral

R z
0

F 1ðxi; yj; zÞdz can be evaluated
numerically for any (i, j) index pair (i.e., along a x = xi = const., y = yj = const. line) by approximating
F1(xi,yj,z) by Eijk’s (k = 1, . . . ,Nz) using a high-order scheme. Note that

R z
0

F 1ðxi; yj; zÞdz is the cumulative dis-
tribution of emission along the line in the three-dimensional configuration. When z = Lz, the integration gives
the total emissive power from the line (x = xi, y = yj),
Z Lz

0

F 1ðxi; yj; zÞdz � Eij: ð19Þ
Here Eij has units of [W/m2], and the CDF of the emission z-location on the line (x = xi,y = yj) is
Rz;ij ¼
R z

0 F 1ðxi; yj; zÞdy

Eij
: ð20Þ
Next, we define F 2ðx; yÞ �
R Lz

0
F 1ðx; y; zÞdz ¼

R Lz

0
ð4jPrT 4Þdz with F2(xi,yj) = Eij; i.e., the Eij’s are the discrete

values of F2(x,y) at grid points (xi,yj) 2 [1,Nx] · [1,Ny] in the x–y plane. Since the Eij’s are available after
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the first step, the F2(xi,y) can be approximated by the Eij’s (j = 1, . . . ,Ny) to any order and, therefore, the
cumulative distributions of F2(xi,y) (i 2 [1,Nx]) can be numerically calculated. Specifically, the total emission
from line x = xi in the x–y plane is
Z Ly

0

F 2ðxi; yÞdy ¼
Z Ly

0

Z Lz

0

F 1ðxi; y; zÞdzdy ¼
Z Ly

0

Z Lz

0

ð4jPrT 4Þjx¼xi
dzdy � Ei; ð21Þ
where Ei has units of [W/m]. Eq. (21) indicates that Ei is actually the total emission from the plane x = xi in the
three-dimensional configuration. With Ei available, the CDF of the emission y-location on line x = xi in the
x–y plane is
Ry;i ¼
R y

0
F 2ðxi; yÞdy

Ei
: ð22Þ
Finally, we define F 3ðxÞ �
R Ly

0
F 2ðx; yÞdy ¼

R Ly

0

R Lz

0
ð4jP rT 4Þdzdy. Then F3(xi) = Ei; i.e., Ei’s are discrete values

of F3(x) at grid points x = xi 2 [1, Nx]. Estimating F3(x) from the Ei (i = 1, . . . ,Nx), the cumulative distribution
of F3(x),

R x
0 F 3ðxÞdx, can be determined. In particular, when x = Lx, the total emission from the gas volume V

is obtained,
Z Lx

0

F 3ðxÞdx ¼
Z Lx

0

Z Ly

0

Z Lz

0

ð4jprT 4Þdzdy dx ¼ EV ; ð23Þ
and the CDF of the emission x-location on the one-dimensional line is
Rx ¼
R x

0
F 3ðxÞdx

EV
: ð24Þ
Eqs. (19)–(24) all involve one-dimensional integration. To illustrate the numerical implementation,R z
0

F 1ðxi; yj; zÞdz is evaluated to fourth-order accuracy as an example. Fig. 2 shows an arbitrary segment in
the z-direction, which consists of four consecutive grid points A1, A2, A3, and A4 whose z-coordinates are de-
noted by zn1, zn2, zn3, and zn4, respectively. Since the values of F1 at all grid points (i.e., Eijk’s) are known, the
spatial distribution of F1 within A1A4 can be approximated using the one-dimensional Lagrange interpolation
formula,
F 1ðzÞ ¼
ðz� zn2Þðz� zn3Þðz� zn4Þ

ðzn1 � zn2Þðzn1 � zn3Þðzn1 � zn4Þ
F 1ðA1Þ þ

ðz� zn1Þðz� zn3Þðz� zn4Þ
ðzn2 � zn1Þðzn2 � zn3Þðzn2 � zn4Þ

F 1ðA2Þ

þ ðz� zn1Þðz� zn2Þðz� zn4Þ
ðzn3 � zn1Þðzn3 � zn2Þðzn3 � zn4Þ

F 1ðA3Þ þ
ðz� zn2Þðz� zn3Þðz� zn1Þ

ðzn4 � zn2Þðzn4 � zn3Þðzn4 � zn1Þ
F 1ðA4Þ; ð25Þ
where z is in the interval [zn1,zn4].
Consider the evaluation of

R z
zn2

F 1ðxi; yj; zÞdz with zn2 6 z 6 zn3. Four quadrature points Bm’s (m 2 [1, 4]) (see

Fig. 2) are introduced within A2A3. They are uniformly distributed with z(B1) = z(A2) and z(B4) = z(A3), and
the values of F1 at Bm are obtained From Eq. (25). With the F1(Bm)’s (m 2 [1,4]) known, the cumulative dis-
tribution of F1 along A2A3 can be calculated,
Z z0

0

F 1ðxi; yj; zÞdz ¼ 1

4
a4z04 þ 1

3
a3z03 þ 1

2
a2z02 þ a1z0: ð26Þ
Here z 0 is the local coordinate with point A2 being the origin, and
a1 ¼ F 1ðB1Þ; ð27Þ
A1
A2 A4A3

B1 B2 B3 B4 z

Fig. 2. Interpolation stencil for point A2 along the z-direction (4th order).
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a2 ¼
1

2

2F 1ðB4Þ � 11F 1ðB1Þ þ 18F 1ðB2Þ � 9F 1ðB3Þ
hz

; ð28Þ

a3 ¼
�9

2

F 1ðB4Þ � 2F 1ðB1Þ þ 5F 1ðB2Þ � 4F 1ðB3Þ
h2

z

; ð29Þ

a4 ¼
9

2

F 1ðB4Þ � F 1ðB1Þ þ 3F 1ðB2Þ � 3F 1ðB3Þ
h3

z

: ð30Þ
When z 0 = hz, Eq. (26) becomes Simpson’s 3/8 integration rule and gives the total emission over A2A3,
Z hz

0

F 1ðxi; yj; zÞdz ¼ hz

8
½F 1ðB1Þ þ 3F 1ðB2Þ þ 3F 1ðB3Þ þ F 1ðB4Þ�: ð31Þ
Note that the quadrature points are introduced here to neatly express the integral coefficients am’s (m 2 [1, 4]).
The integral

R z
zn2

F 1ðxi; yj; zÞdz can also be obtained by directly integrating Eq. (25) over [zn2,z]. Since the values
of F1 at the four quadrature points are evaluated using Eq. (25), the polynomial formed by them is exactly
identical to Eq. (25) and, therefore, both methods give identical answers. The introduction of the quadrature
points into the integration process, however, makes Eqs. (26)–(31) formally independent of the choice of the
interpolation stencil and the integration segment. These formulae then can be applied to any grid segment in
the z-direction without changing their coefficients. In comparison, the values of F1(Bm) (m 2 [1, 4]) are evalu-
ated using Eq. (25) and thus depend on the definition of the interpolation stencil A1A2A3A4. Generally, the
stencil is defined in such a way that the target integration segment is as close to the center of the stencil as
possible. For any internal grid segment [zk,zk+1] (k 2 [2, Nz � 2]), grid points [zk�1,zk,zk+1,zk+2] are thus cho-
sen to form the four-point interpolation stencil. For the first and last grid segments [z1,z2] and ½zNz�1; zNZ �, the
stencils are formed by the grid points [z1,z2,z3,z4] and ½zNz�3; zNZ�2; zNz�1; zNZ �, respectively.

With the above preparation, the cumulative distribution of F1(xi,yj,z) along the z-direction can be calcu-
lated as follows. For any value z 2 [0,Lz), an index n (1 6 n 6 NZ � 1) is found such that zn 6 z < zn+1, and
Z z

0

F 1ðxi; yj; zÞdz ¼
Xn�1

k¼1

Z zkþ1

zk

F 1ðxi; yj; zÞdzþ
Z z

zn

F 1ðxi; yj; zÞdz: ð32Þ
Therefore, application of Eqs. (26)–(31) to each individual segment with their respective interpolation stencils
leads to the value of

R z
0

F 1ðxi; yj; zÞdz. When z = Lz, Eq. (32) gives Eij: that is, the total emission over the entire
z-direction at (x = xi,y = yj).

By replacing F1(xi,yj,z) by F2(xi,y) and F3(x), respectively, the above scheme can be used to evaluateR y
0 F 2ðxi; yÞdy (i 2 [1, Nx]) and

R x
0 F 3ðxÞdx. With the cumulative distributions along all three directions avail-

able, the emission position then is determined as follows.
First, for any random number Rx 2 (0,1), find the index l 2 [1,Nx � 1] such that
R xl

0
F 3ðxÞdx
EV

6 Rx <

R xlþ1

0
F 3ðxÞdx
EV

: ð33Þ
Then the corresponding emission x-location is x = xl + x 0, where x 0 is the root of the polynomial,
Z x0

0

F 3ðxÞdx ¼ 1

4
a4x04 þ 1

3
a3x03 þ 1

2
a2x02 þ a1x0 ¼ Rx � EV �

Z xl

0

F 3ðxÞdx: ð34Þ
The polynomial coefficients, a1, a2, a3, and a4, are defined in Eqs. (27)–(30). Eq. (34) can be solved by several
methods; here Ridders’ method [28] is used to ensure that the root remains in the interval (0, hx) during
iteration.

The second step is to find the emission position in the y-direction at the specified x position for a random
number Ry. Assume that the one-dimensional four-point interpolation stencil used to calculate the cumulative
distribution of F3(x) within the segment [xl,xl+1] corresponds to the grid points [xl�1,xl,xl+1,xl+2]. Then at
each stencil point xi (i = l � 1, l, l + 1, l + 2) an emission y-location, yi, can be determined for the given
Ry 2 (0, 1),
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yi ¼ yim þ y0i; ð35Þ
where the index im 2 [1, Ny � 1] and y 0i are, respectively, determined by
R yim
0 F 2ðxi; yÞdy

Ei
6 Ry <

R yimþ1

0 F 2ðxi; yÞdy
Ei

; ð36ÞZ y0i

0

F 2ðxi; yÞdy ¼ 1

4
a3y04i þ

1

3
a2y03i þ

1

2
a1y02i þ a0y0i ¼ Ry � Ei �

Z yim

0

F 2ðxi; yÞdy: ð37Þ
Once the yi’s at each of the four xi’s (i = l � 1, l, l + 1, l + 2) have been found, the emission y-location at x is
determined by one-dimensional fourth-order interpolation,
yðxÞ ¼
X

l�16i6lþ2

Y
l�16p6lþ2

p 6¼i

x� xp

xi � xp

2664
3775yi: ð38Þ
Finally, the emission z-locations are determined. With y known, the nearest y-grid index m 2 [1,Ny � 1] is
found such that ym 6 y < ym+1. Assume that the four-point interpolation stencil in the y-direction for the seg-
ment [ym,ym+1] corresponds to [ym�1,ym,ym+1,ym+2]. Along with the stencil in the x-direction, a two-dimen-
sional stencil is formed, which consists of 16 grid points (xi,yj) (i = l � 1, l, l + 1, l + 2; j = m � 1,
m,m + 1,m + 2). For a random number Rz 2 (0, 1), the emission z-location, zij, at each point (xi,yj) in that
two-dimensional stencil is determined by
zij ¼ zijr
þ z0ij; ð39Þ
where the index ijr 2 [1, Nz � 1] and z0ij are, respectively, determined by
R zijr
0

F 3ðxi; yj; zÞdz

Eij
6 Rz <

R zijrþ1

0
F 3ðxi; yj; zÞdz

Eij
; ð40ÞZ z0ij

0

F 3ðxi; yj; zÞdz ¼ 1

4
a3z04ij þ

1

3
a2z03ij þ

1

2
a1z02ij þ a0z0ij ¼ Rz � Eij �

Z zijr

0

F 3ðxi; yj; zÞdz: ð41Þ
With all zij’s (i = l � 1, l, l + 1, l + 2; j = m � 1,m,m + 1,m + 2) available, the emission z-location at (x,y) is
determined by the two-dimensional fourth-order interpolation formula,
zðx; yÞ ¼
X

l�16i6lþ2
m�16j6mþ2

Y
l�16p6lþ2

p 6¼i

x� xp

xi � xp

2664
3775 Y

m�16q6mþ2
q6¼j

y � yq

yj � yq

2664
3775zij: ð42Þ
After z is obtained, z’s nearest grid index is found; it is denoted here as r with zr 6 z < zr+1.
It can be observed that the above procedure involves one- and two-dimensional interpolations and one-

dimensional numerical integration. To extend the scheme to any order n (n P 2), one needs only to modify
the interpolation stencils employed in the procedure so that they are formed by n and n · n grid points for
one- and two-dimensional interpolations, respectively. The one-dimensional integration scheme also is chan-
ged accordingly.

The choice of emission wavenumber depends on the conditions at the emission position (x,y,z). For a given
position (x,y,z) and a random number Rg, the emission wavenumber is determined from Eq. (8). For a par-
ticipating medium containing absorbing/emitting molecular gases, a narrow band model should be applied to
treat spectral-line-structure effects [1] (Chapter 20). For gray media, Eq. (8) is not needed.

The emission direction is readily obtained by inverting Eq. (9) for random numbers Rw and Rh 2 (0,1),
without numerical error.
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4.2. Tracing and absorption

At the tracing stage an energy partitioning scheme is adopted. Therefore, the energy of each photon bun-
dle is gradually attenuated due to absorption until: (1) the bundle leaves the domain or hits a wall and is
absorbed; or (2) its energy is depleted to zero. The path of each photon bundle traveling through the med-
ium is partitioned into multiple segments (or propagation steps). Optical thickness is calculated for each
step to determine the fraction of radiant energy deposited into the corresponding layer. Theoretically, the
sizes of the propagation steps can be arbitrarily chosen as long as the optical thickness is evaluated with
an accuracy that is consistent with that of the emission treatment. However, as will be explained in Section
4.4, determination of the radiation source term at each grid point requires the knowledge of the net radiant
energy through the boundaries of an associated control volume. The boundary planes of the control vol-
umes and the grid planes are, therefore, used here to partition the propagation paths of photon bundles,
and each resultant segment is considered as a propagation step. Since the boundary planes of the control
volumes are centered between the grid planes (see Fig. 3), the largest propagation step would be

Smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y þ h2

z

q
=2, i.e., smaller than max(hx,hy,hz) and, thus, no further partitioning is needed. Simp-

son’s 3/8th rule then can be used directly to integrate jP over the step without loss of accuracy. That is,
Z S

0

jP ds ¼ S
8
½jP ;0 þ 3jP ;1 þ 3jP ;2 þ jP ;3�; ð43Þ
where the jP,l’s (l 2 [0,3]) are the absorption coefficients at~xl ¼~x0 þ ðl=3ÞSŝ with~x0 being the starting position
vector for the current propagation step. Note that jP is a function of local temperature, species mass fractions,
and pressure, whose values are determined by using Lagrangian fourth-order (in the present example) three-
dimensional interpolation. The interpolation formula is given in Appendix B.

4.3. Boundary conditions

When a photon bundle reaches a periodic boundary, it re-enters the computational domain through the
opposite boundary. For example, if the planes y = 0 and y = Ly are corresponding periodic boundaries and
a photon bundle reaches plane y = 0 at a coordinate of (x, 0,z), its new location will be (x,Ly,z). Other prop-
erties of the photon bundle, such as the propagation direction and the radiant energy it carries, remain
unchanged.

At a radiative boundary, surface emission needs to be considered. Generally, for any given distribution of
temperature and surface emittance, the emission properties (position, wavelength, and direction) of photon
i-1
 j-1

i i+1 i+2

 j

j+1

j+2

x

y

Esouth

Enorth

EeastEwest

Fig. 3. Interpolation stencil for evaluation of radiation source term (2-D).
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bundles leaving a radiative boundary are determined in a similar manner as for emission from within the vol-
ume, and the procedures and numerical schemes developed in the previous subsections are applicable.

Two types of radiative surfaces are considered in the present work: ‘‘cold’’ and ‘‘hot’’ boundaries. Both are
treated as black surfaces and thus absorb any photon bundles that reach them from inside the volume. At the
‘‘cold’’ boundary, the surface temperature is assigned to be 0 K, and no surface emission occurs at that bound-
ary. At the ‘‘hot’’ boundary, radiative equilibrium is assumed; i.e., the total radiant energy leaving the bound-
ary is equal to that absorbed by the boundary. For a diffuse emitter, this condition is implemented in the
following manner. Every time that a photon bundle reaches a ‘‘hot’’ boundary and is absorbed, a new photon
bundle is emitted from the boundary into the domain. The emission position and the direction of the new pho-
ton bundle are chosen randomly according to their respective uniform distribution functions. Other proper-
ties, such as the wavenumber and the radiant energy, are set to those of the photon bundle that was just
absorbed.

4.4. Radiation source term

The underlying DNS code solves the differential forms of the conservation equations using a finite-differ-
ence method and, therefore, requires the radiation source term at each grid point. To illustrate the high-order
numerical scheme for evaluation of the source term, a two-dimensional example is considered. Fig. 3 shows
the control volume associated with grid point (xi,yj); the control volume is formed by lines x = xi�1/2,
x = xi+1/2, y = yj�1/2, and y = yj+1/2 and will be referred to hereafter as Vij. The figure also shows the net radi-
ant energy through the four boundaries of the control volume that are denoted as Ewest, Eeast, Esouth, and
Enorth, respectively (units of [W]).

We introduce DEx ” Ewest � Eeast, DEy ” Esouth � Enorth, and DEij ” DEx + DEy. Then DEij is the total radi-
ant energy deposited in Vij, and is related to the local radiative source through
DEij ¼
Z

V ij

Qrad dV ; ð44Þ
where Qrad � �r �~qrad.
Due to the carefully designed tracing scheme described in Section 4.2, Ewest, Eeast, Esouth, and Enorth are

available immediately after the tracing of all photon bundles is done; DEij is thus a known quantity. To find
Qrad at grid point (xi,yj), a two-dimensional interpolation stencil is defined for Vij, formed by
[xi�1,xi,xi+1,xi+2] · [yj�1,yj,yj+1,yj+2] in Fig. 3. The spatial distribution of Qrad is approximated in Vij by
the Qrad at the stencil points using the two-dimensional Lagrangian interpolation formula,
Qradðx; yÞ ¼
X

i�16l6iþ2
j�16m6jþ2

Y
i�16p6iþ2

p 6¼l

x� xp

xl � xp

2664
3775 Y

j�16q6jþ2
q6¼m

y � yq

ym � yq

2664
3775Qrad;lm: ð45Þ
Substitution of Eq. (45) into Eq. (44) leads to an equation that is a linear function of the Qrad,lm

(l = i � 1, i, i + 1, i + 2; m = j � 1, j, j + 1, j + 2). This procedure is applied to all grid points, resulting in a
sparse linear system for the Qrad,ij 2 [1,Nx] · [1, Ny] that can be solved using any linear solver. The coefficient
matrix of the resultant linear system depends only on the coordinates of the grid points. For a given radiation
problem and a prespecified order of accuracy, this matrix only needs to be calculated once. The three-dimen-
sional counterpart of Eq. (45) for any order of accuracy takes the form of Eq. (B.1) with the replacement of
function F(x,y,z) by Qrad(x,y,z).

4.5. Comments on choice of interpolation functions

Here high-order Lagrange polynomials have been adopted to interpolate function values inside the compu-
tational domain. Compared to alternative interpolation methods, such as splines, Lagrange polynomials have
two attractive features: their formulations are simple and intuitive, and their three-dimensional formulations
can be readily derived from one-dimensional formulations of the same order. The potential interpolation
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oscillations associated with high-order Lagrange polynomials are well controlled here because: (i) the grid sys-
tems adopted in DNS are directionally uniform and dense; and (ii) inside the computational domain, interpo-
lation is done only for the points in the center regions of the interpolation stencils.

5. Numerical tests

In this section, the high-order photon Monte Carlo scheme developed in Section 4 is tested for several radi-
ation problems. Nondimensional forms of the governing equations are solved, as discussed earlier. The dimen-
sionless quantities and variables are denoted by a superscript ‘+.’ Appendix A shows the
nondimensionalization of the radiation source term in the energy equation. The dimensionless forms of the
other equations are given in Ref. [25]. A detailed assessment of numerical errors is provided in Section 5.1.
Sections 5.2 and 5.3 provide examples of applications of the new algorithm to laminar and turbulent premixed
flames, respectively.

5.1. One-dimensional radiation with specified temperature field

Here the accuracy of the high-order photon Monte Carlo scheme is established using a one-dimensional
radiation problem. The configuration is a stationary, nonscattering gray medium enclosed by two cold, black
bounding surfaces separated by a distance L+ = 0.6. The temperature field is specified as
TþðxþÞ ¼ 5 sin 4p
xþ

Lþ
� 1

8

� �� �
þ 2

� �
: ð46Þ
The Planck-mean absorption coefficient of the medium is a function of local temperature:
jþp ðTþÞ ¼ c0 þ c1

8

Tþ

� �
þ c2

8

Tþ

� �2

þ c3

8

Tþ

� �3

þ c4

8

Tþ

� �4

þ c5

8

Tþ

� �5

; ð47Þ
where the coefficients are c0 = �0.23093, c1 = �1.12390, c2 = 9.41530, c3 = �2.99880, c4 = 0.51382,
c5 = �1.86840 · 10�5, respectively; these are taken from a radiation model suggested for water vapor [29].
Fig. 4 shows the spatial distribution of the temperature and the Planck-mean absorption coefficient for this
problem, while Fig. 5 shows the profiles of the corresponding theoretical solutions for the radiative heat flux
and the source term (see Appendix C: Eqs. (C.1)–(C.3)).

A series of numerical simulations for this one-dimensional radiation problem was conducted using a three-
dimensional configuration to test the high-order photon Monte Carlo method that has been developed here.
The computational domain is a cubic box of size (L+)3 = 0.63 with the east and west sides being the bounding
surfaces. Periodic boundary conditions are enforced on the other four sides to simulate an infinite one-dimen-
sional slab. The grid systems adopted in all calculations were uniform in all three directions.
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Fig. 4. Distributions of temperature and Planck-mean absorption coefficient in the one-dimensional radiation problem.



x+/L+

q+ ra
d

[∇
⋅q

ra
d]

+

0 0.2 0.4 0.6 0.8

-10000

-5000

0

5000

10000

-200000

-100000

0

100000

200000

1

Fig. 5. Spatial distributions of theoretical solutions of radiative heat flux and radiation source term in the one-dimensional radiation
problem.
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5.1.1. Systematic error

First, the systematic error of the photon Monte Carlo scheme is quantified. The grid system for this study
was 7 · 7 · 7. This can be thought of as a small subdomain of a mesh that would be used for full-scale sim-
ulation. Because of the interpolation schemes employed in the photon Monte Carlo code, the effective temper-
ature profile that is simulated is different from the sinusoidal profile shown in Fig. 4 and depends on the
interpolation order. Fig. 6 shows the implied spatial distributions of temperature for several orders of inter-
polation scheme, while Fig. 7 shows the corresponding theoretical radiative heat fluxes; there the subscript
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Fig. 6. Implied temperature profiles in photon Monte Carlo simulations for various interpolation orders in the one-dimensional radiation
problem.
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‘‘th,1’’ indicates the theoretical solution corresponding to the sinusoidal temperature profile, and the sub-
script ‘‘th, n’’ for an integer n indicates the theoretical solution obtained with a temperature profile constructed
using the nth-order interpolation scheme from Fig. 6. Also shown in Fig. 7 are the statistical averages and
standard deviations of the y–z plane-averaged numerical results from the photon Monte Carlo simulations;
these are designated by a subscript ‘‘MC.’’ Ten trials were carried out for each case with each trial involving
an average of 1000 photon bundles per computational cell. Here the standard deviations are much smaller
than the magnitudes of the radiative heat flux at grid points, and the lower and upper limits of the error bars
appear merged in Fig. 7; a ‘‘zoom-in’’ for one case (6th order) is included to show the magnitude of the sta-
tistical error. It can be observed that the numerical predictions agree very well with their respective theoretical
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solutions based on the implied temperature profiles for all orders of accuracy. As the order of spatial accuracy
increases, the numerical solution approaches the theoretical solution for the sinusoidal temperature profile.

5.1.2. Statistical error
Next, the statistical error is examined for the same 7 · 7 · 7 grid system. The average number of photon

bundles per computational cell, Npc, was increased systematically from 100 to 1000, 10,000, and 100,000.
For each value of Npc and each order of accuracy, 10 independent trials were conducted. The standard devi-
ations of the y–z plane-averaged radiative heat fluxes at x+/L+ = 0, 1/6, 1/3 and 1/2 were calculated for each
case, and their variations with Npc are plotted in Fig. 8. There r10 denotes standard deviation normalized by
log10 Npc
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qþ �max, the maximum value of the radiative heat flux from the theoretical temperature distribution. The
solid line with the legend ‘‘ref.’’ in each frame is a reference line that has a slope of �1/2, corresponding to
the expected behavior of the standard deviation in a Monte Carlo method [23,24,30],
Fig. 9
proble
r10 � N�1=2
pc : ð48Þ
5.1.3. Spatial discretization error

Third, the discretization error is examined. For each order of accuracy, the problem was solved first on the
7 · 7 · 7 grid. Then the number of computational cells in the x-direction, Ncells, was sequentially doubled from
6 to 12, 24, 48, 96, etc., with the numbers of grid points in the y- and z-directions fixed at 7. Again, this can be
interpreted as a subdomain of a mesh from a larger simulation corresponding to two wavelengths of variation
in the temperature profile. For each grid system, 10 trials were conducted to obtain statistical averages and
standard deviations of the y–z plane-averaged radiative heat flux along the x-direction, and (with one excep-
tion) the number of photon bundles per cell was determined such that the statistical error remains smaller than
the discretization error jqþMC � qþth;1 j at each grid point. Fig. 9 shows the variation of discretization error
�MC,1 with the number of computational cells in the x-direction at several x-locations, where �MC;1 �
jqþMC � qþth;1j=qþmax. Also shown in Fig. 9 are reference lines having slopes of �n, where n is the order of accu-
racy of the scheme tested. In all cases and at most x-locations shown in the figure, the curves obtained from the
numerical simulations are parallel to or steeper than their respective reference lines, confirming that the
scheme does achieve the claimed order of spatial accuracy. An exception occurs at x+/L+ = 1/2 with the sec-
ond-order scheme. At that location, the radiative heat flux is close to zero (Fig. 5), and the local error is several
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orders of magnitude lower than at the other locations plotted. The absence of a �1/2 slope locally is not a
concern.

Fig. 10 shows an estimate of the minimum number of photon bundles per cell, Npc,min, that is required to
keep the statistical error smaller than the spatial discretization error. This value represents an average over
the spatial locations plotted in Figs. 8 and 9, and uses the N�1=2

pc scaling for statistical error that has been
confirmed in Fig. 8. The abscissa of Fig. 10 (Ncells) is the number of cells per wavelength in the temperature
profile (Fig. 5). Fig. 10 shows that for a given spatial order, the minimum number of photon bundles
required to keep the statistical error below the discretization error increases with increasing spatial resolu-
tion. For a fixed spatial resolution Ncells, Npc,min increases with the order of accuracy. The solid horizontal
line through zero corresponds to 1000 photon bundles per cell; this represents an approximate practical
upper limit on what would be practicable for DNS of a turbulent flame. For dense grids and without intro-
duction of any additional variance reduction strategies, second- and third-order schemes can be used
effectively.

5.1.4. Radiation source term

Finally, the accuracy of the radiation source term from the photon Monte Carlo simulation is examined.
The analysis strategy is the same as for the examination of the discretization error of the radiative heat flux.
The variation of the discretization error of the radiation source term versus the number of computational cells
at several x-locations is shown in Fig. 11; here �MC,1 is defined as jQþMC � Qþth;1j=Qþmax. Comparison of the
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slopes of the lines obtained via simulation to the reference lines reveals that the numerical predictions of
source terms also achieve the expected order of accuracy.

5.2. One-dimensional premixed laminar flame

Tests in the previous subsection have isolated the statistical and discretization errors and confirmed the spa-
tial order of accuracy of the photon Monte Carlo scheme. The method next is applied to a one-dimensional
premixed laminar flame. The nondimensional parameters adopted for this case are:
F

Pr ¼ 0:75; Le ¼ 1:0; a ¼ 0:75; b ¼ 8:0; Da ¼ 129:616;
where Pr and Le are Prandtl number and Lewis number, respectively, and a and b are the reaction parameters
introduced in Eq. (1). Da denotes Damköhler number and is defined as Da ¼ D=S2

L0K. Here D and SL0 are the
species diffusivity and unstretched, adiabatic, laminar flame speed, respectively. The nondimensional coeffi-
cient r+ in Eq. (A.4) is 10�6, and the Planck-mean absorption coefficient of the fictitious medium is assumed
to be a function of the reactant mass fraction as well as temperature to mimic that of water vapor,
jp
þðTþ; eY Þ ¼ jþp ðTþÞ � ð1� eY Þ; ð49Þ
where jþp ðTþÞ is defined in Eq. (47). With these choices, the ratio of the maximum values of radiation source
term to chemical source term in the energy equation is 24%, and the total radiant fraction (ratio of radiation
source term to chemical source term integrated over the computational domain) is 11.8%.

The numerical simulation is conducted in a two-dimensional configuration with Lþx ¼ 4:5 and Lþy ¼ 0:09.
The grid system consists of 451 · 10 points that are uniformly distributed in the x- and y-directions, respec-
tively. The reactants flow into the domain through the west side and the burnt gases flow out of domain
through the east side. The ‘‘cold’’ and ‘‘hot’’ radiation boundary conditions are enforced at the west and east
sides, respectively. At the south and north sides, periodic boundary conditions are adopted for both flow and
radiation to simulate an infinite slab in the y-direction.

To elucidate the effects of radiation, the calculation was performed in three stages. First, a stationary adi-
abatic laminar flame solution was established; the flame was stationary for an inflow speed of SþL0 ¼ 0:0016.
Next, a new stationary laminar flame solution was established starting with the stationary adiabatic solution
as an initial condition, and time marching to a new stationary solution with the radiation source term obtained
by solving the RTE using an approximate method (a P1 spherical harmonics method [1]). This accelerates con-
vergence to the steady state; the same steady-state solution is obtained without using P1 as an intermediate.
With radiation enabled, the reactants are effectively preheated, resulting a higher flame speed but lower prod-
uct temperature. A stationary solution was obtained for an inlet velocity of SþL ¼ 0:0024, a 50% increase over
the adiabatic value. Finally, the photon Monte Carlo method was enabled. Third-order spatial accuracy was
used with 500,000 photon bundles per computational time step (123 bundles per cell on average). Statistical
error was further reduced by averaging the radiation source term over 100 time steps. The system was again
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run to steady state. For this simple configuration and radiation properties, only small adjustments were found
compared to the converged P1 solution.

Converged steady-state temperature and radiation source term profiles are shown in Figs. 12 and 13. The
attenuation of the burned-gas temperature with respect to the adiabatic flame is 9% (Fig. 12) and the shape of
the temperature profile with radiation (the peak on the hot side of the reaction zone) is a consequence of the

prescribed functional form of jp
þðTþ; eY Þ. Statistical fluctuations in the radiation source term can be seen on

the hot product side in Fig. 13. There the radiation source term has been normalized by its maximum value.
While these can be reduced by increasing the number of photon bundles and/or by time-averaging for this
stationary flame, such measures have not been found to be necessary. For both laminar flames and turbulent
flames (Section 5.3), no adverse effects or growing instabilities have been observed.

5.3. Statistically one-dimensional premixed turbulent flame

5.3.1. Example

The final configuration examined is a statistically one-dimensional, turbulent, premixed flame (Fig. 1). Ini-
tial results for this configuration have been reported in [31]. Those simulations corresponded to a global radi-
ant fraction of approximately 0.26%, that is, to a case where radiation has little influence on the turbulent
flame structure. Here, a two-dimensional simulation with a global radiant fraction of 5.3% is presented.
The thermo-chemical and radiation properties adopted are the same as in Section 5.2. This simulation is
intended only to demonstrate that the new algorithms can be applied to DNS of turbulent reacting flows.
Detailed analysis of the physical effects of thermal radiation and TRI in turbulent reacting flows is beyond
the scope of this numerical method paper. Applications of the present algorithms to turbulent premixed
and nonpremixed systems can be found in [31–33].

Here the computational domain is a square box of dimension L+ = 4.5, with 451 · 451 grid points. A third-
order photon Monte Carlo method has been used with 107 photon bundles traced per computational time
step. The initial condition corresponds to the converged stationary one-dimensional laminar solution of Sec-
tion 5.2. That solution was mapped to the two-dimensional box, and a field of two-dimensional homogeneous
isotropic turbulence (turbulence Reynolds number is 64.87; ratio of rms turbulence intensity to laminar flame
speed is 20.83) was superposed [31]. The system then was allowed to evolve in time. ‘‘Cold’’ and ‘‘hot’’ radi-
ation boundary conditions were enforced at the west and east faces, respectively, and periodic boundary con-
ditions at the south and north faces.

Instantaneous temperature profiles after the system has evolved for four turbulence eddy turnover times are
shown in Fig. 14. The corresponding adiabatic computation also is shown. It can be seen that the product
temperature in the flow with radiation is significantly lower than its adiabatic counterpart, and that the local
reaction zone structure is modified significantly by radiation.



Fig. 14. Instantaneous temperature contours for statistically one-dimensional turbulent premixed flames after four turbulence eddy turn-
over times. Left: without radiation; right: with radiation.
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5.3.2. Computational issues for turbulent reacting flows

Computational overhead for the photon Monte Carlo method can be substantial. While stable solutions
can be obtained using relatively small number of photon bundles, reducing statistical error to levels that
are formally below the spatial discretization error requires large numbers of samples and other variance reduc-
tion strategies. A few general comments on computational issues for turbulent reacting flows are offered here;
further analysis and approaches to reduce the computational overhead are the subjects of ongoing research.

First, the computational effort increases in proportion to the number of photon bundles and the average
distance that a bundle travels before being absorbed. For the cases reported in [31], radiation required approx-
imately 10 times the CPU time of the underlying simple-chemistry DNS code. While this is significant, it is
important to keep in mind that compared to alternative methods, the photon Monte Carlo method provides
an ‘‘exact’’ solution to the RTE that is compatible with the philosophy of DNS, as pointed out in Introduc-
tion. Moreover, the implementation is quite general. Nongray radiation properties, scattering, and solid par-
ticle (soot) radiation can be included with little additional computational overhead. For computations
involving more detailed chemistry (e.g., [34]), the radiation calculation would require little additional compu-
tational effort, while the CPU time for the underlying hydro-chemical DNS would increase dramatically;
chemical kinetics then would dominate the CPU requirements.

Second, computational efficiency can be enhanced by carefully choosing the number of photon bundles
based on the characteristic optical thickness. For a flowfield with low optical thickness, photon bundles
can travel a long distance before being absorbed and cross many computational cells. By contrast, in a flow-
field with high optical thickness, photon bundles’ propagation distances are short. In extreme cases, photon
bundles may not even cross one computational cell. Consequently, fewer photon bundles can be used for cases
with lower optical thickness to achieve the same statistical accuracy as for cases with higher optical thickness.

Third, the statistical error of the photon Monte Carlo method can be reduced by methods other than
increasing the number of photon bundles. For the one-dimensional laminar premixed flame in Section 5.2,
for example, averages over time and space can be employed to obtain the distributions of properties along
the flame propagation direction. In the statistically one-dimensional turbulent premixed flame of Fig. 14,
the computational time step is dictated by a speed-of-sound-based CFL number, and 100 computational time
steps correspond to less than 3% of one turbulence eddy turn-over time. Thus, even in turbulent cases, it is
possible to employ some time averaging of the radiation source term.

Fourth, the photon Monte Carlo method can be parallelized to take advantage of distributed-memory com-
puters. A spatial domain decomposition is employed in the underlying DNS code. The number of photon bun-
dles emitted from any computational cell is proportional to the local jp * T4 product. Therefore, the majority
of the photon bundles are emitted from the hot product region while only a few are emitted from the cold
reactant side. For the statistically one-dimensional premixed turbulent system considered here, then, good
load balancing is achieved by decomposing the domain into equally spaced slabs in the y-direction. In each
subdomain, a prespecified number of photon bundles is assigned. Their propagation is traced, and those
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reaching the subdomain’s boundaries are collected until all bundles have reached a subdomain boundary or
have been absorbed. Then all bundles are passed to the respective neighboring subdomains. The large message
sizes enhance scalability. Nearly linearly scaling has been achieved to date on up to 32 processors.

6. Conclusions

A high-fidelity photon Monte Carlo method has been developed. Its statistical and discretization errors
have been isolated and quantified. Formal spatial accuracy of up to sixth order for the radiative heat flux
and up to fourth order for the radiation source term has been verified, demonstrating the compatibility of
the method with the high-order numerical schemes used in DNS of steady and unsteady, laminar and fully
turbulent chemically reacting flows. Computational considerations may limit the number of photon bundles
that can be used in practice, and hence limit the spatial discretization accuracy to second or third order, in
DNS of turbulent reacting flows. This is expected to be sufficient in most cases. The capability of the photon
Monte Carlo method to address radiation heat transfer in chemically reacting flows has been demonstrated
through simulations of a one-dimensional laminar premixed flame and a statistically one-dimensional, turbu-
lent premixed flame. Applications of the algorithm to generate new physical insight into thermal radiation and
turbulence–radiation interaction in canonical premixed and nonpremixed turbulent, chemically reacting flows
have been reported in [31–33]. Further improvements in computational efficiency and variance reduction strat-
egies are the subjects of ongoing research.
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Appendix A. Nondimensionalization of radiation source term in energy equation

The following reference values have been introduced to nondimensionalize the governing equations, as pro-
vided by the underlying DNS code [25]
aref ; Lref ; tref ¼
Lref

aref
; T ref ; qref ; pref ; lref ; mref ; kref ; cpref

;

where a is the speed of sound. The above values are defined with respect to a state at ‘‘infinity,’’ which can be
any state. The sole condition imposed to variables at ‘‘infinity’’ is that the perfect gas relation is satisfied. With
these restrictions the reference values can be defined by the ‘‘infinity’’ state as
aref ¼ a1; T ref ¼ ðc� 1Þ � T1; qref ¼ q1;

pref ¼ q1 � a2
1 ¼ c � p1;

lref ¼ l1; mref ¼ m1; kref ¼ k1; cpref
¼ cp1 :
Now consider the energy equation Eq. (2). Its dimensionless form is obtained by dividing it by ½qref a3
ref =Lref �.

Accordingly, the radiation source term in Eq. (2) becomes
Lref

qref a3
ref

� ½r �~qrad� ¼
Lref

qref a3
ref

� ½jP ref rT 4
ref � � ½r �~qrad�þ ðA:1Þ
where
½r �~qrad�þ �
1

jP ref rT 4
ref

½r �~qrad�

¼ 4jþP Tþ4 �
Z 1

0

jþg Gþg dg: ðA:2Þ
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Here jP ref is the reference value of jP and defined by the ‘‘infinity’’ state as jP ref ¼ jP ;1. Other quantities in the
above equation are defined as
jþP �
jP

jP ref

; jþg �
jg

jP ref

; Tþ � T
T ref

;

Gþg �
Gg

rT 4
ref

; xþ � x
Lref

; Lþ � L
Lref

:

Also
Reref �
aref � Lref

mref
; Prref �

cpref
� lref

kref
;

Nref �
kref � jP ref

4r � T 3
ref

; sref � Lref � jP ref ;
so that
Lref

qref a3
ref

� ½jP ref rT 4
ref � ¼

kref

qref � aref � Lref
� ½Lref � jP ref �

2 � T ref

a2
ref

�
rT 3

ref

kref � jP ref

¼
cpref

Reref � Prref
� ðc� 1ÞT1

a2
1

�
s2

ref

4Nref

¼ 1

Reref � Prref
�

s2
ref

4Nref
� rþ: ðA:3Þ
Substitution of Eq. (A.3) into Eq. (A.1) leads to

Lref

qref a3
ref

� ½r �~qrad� ¼ rþ � ½r �~qrad�þ; ðA:4Þ
which is the radiation source term in the dimensionless energy equation.

Appendix B. Three-dimensional interpolation of state quantities at arbitrary locations

In a photon Monte Carlo method, optical thickness needs to be evaluated during the tracing of photon
bundles, which requires the knowledge of the absorption coefficient j along the traveling paths. Generally,
j is a function of temperature, species mass fractions, and pressure whose values are only available at discrete
nodal points. Interpolation, therefore, has to be employed to determine those state quantities at any position
before calculating j.

Assume that the interpolation location is (x,y,z) with x = xl + Dx, y = ym + Dy, and z = zr + Dz, where
1 6 l < N x; 0 6 Dx < hx;

1 6 m < Ny ; 0 6 Dy < hy ;

1 6 r < N z; 0 6 Dz < hz:
Also assume that the interpolation stencil is formed by ½xi1 ; xi1þ1; . . . ; xi2 � � ½yj1
; yj1þ1; . . . ; yj2

� �
½zk1

; zk1þ1; . . . ; zk2
�, where
i1 6 l 6 i2; i2 � i1 þ 1 ¼ n;

j1 6 m 6 j2; j2 � j1 þ 1 ¼ n;

k1 6 r 6 k2; k2 � k1 þ 1 ¼ n:
Here n (P2) is the interpolation order required. Then F(x,y,z) can be calculated from the equation
F ðx; y; zÞ ¼
X

i16i6i2;j16j6j2
k16k6k2

Y
i16p6i2

p 6¼i

x� xp

xi � xp

Y
j16q6j2

q6¼j

y � yq

yj � yq

Y
k16s6k2

s 6¼k

z� zs

zk � zs
F ijk

2664
3775; ðB:1Þ
where F can be temperature, species mass fractions, pressure, or any other physical properties.
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Appendix C. Exact solution to one-dimensional nonscattering gray medium enclosed by black bounding

surfaces

For a nonscattering gray medium enclosed by two plane-parallel black bounding surfaces that are sepa-
rated by a distance of L, the theoretical solutions for the incident radiation, radiative heat flux, and radiation
source term are, respectively [1],
GþðsÞ ¼ 2p Ib1 � E2ðsÞ þ Ib2 � E2ðsL � sÞ½

þ
Z s

0

Ibðs0Þ � E1ðs� s0Þds0 þ
Z sL

s
Ibðs0Þ � E1ðs0 � sÞds0

�
; ðC:1Þ

qþðsÞ ¼ 2p½Ib1 � E3ðsÞ � Ib2 � E3ðsL � sÞ

þ
Z s

0

Ibðs0Þ � E2ðs� s0Þds0 �
Z sL

s
Ibðs0Þ � E2ðs0 � sÞds0�; ðC:2Þ
and
½r �~qrad�þ ¼ 4jþp ðTþÞ
4 � jþp Gþ; ðC:3Þ
where En(x) is the exponential integral of order n,
EnðxÞ ¼
Z 1

1

e�xt dt
tn
; n ¼ 0; 1; 2; . . . ðC:4Þ
It can be readily verified that the following recurrence relationship holds,
dEn

dx
ðxÞ ¼ �En�1ðxÞ; n ¼ 1; 2; . . . ðC:5Þ
For a given spatial distribution of temperature, Eqs. (C.1)–(C.3) must be numerically solved to obtain the the-
oretical values for G+, q+, and ½r �~qrad�þ at discrete nodal points. Since E1(x) changes dramatically near x = 0,
direct numerical integration of the last two terms in Eq. (C.1) using regular schemes will result in significant
error in G+. To ensure sufficient accuracy, the equation is first integrated by parts to replace E1(x) by E2(x) by
employing Eq. (C.5), which can then be numerically integrated by, for example, Simpson’s 3/8 rule. The final
expression of Eq. (C.1) is as follows:
:

GþðsÞ ¼ 2½ðTþÞ4ð0Þ � E2ðsÞ þ ðTþÞ4ðsLÞ � E2ðsL � sÞ�

þ 2 ðTþÞ4ðsÞ � E2ð0Þ � ðTþÞ4ð0Þ � E2ðsÞ � 4

Z s

0

ðTþÞ3ðs0Þ � dðT
þÞ

dx
ðs0Þ � 1

jþp ðs0Þ
� E2ðs� s0Þds0

" #

þ 2 ðTþÞ4ðsÞ � E2ð0Þ � ðTþÞ4ðsLÞ � E2ðsL � sÞ þ 4

Z sL

s
ðTþÞ3ðs0Þ � dðT

þÞ
dx
ðs0Þ � 1

jþp ðs0Þ
� E2ðs0 � sÞds0

" #
ðC:6Þ
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